0x1::Math
The module provide some improved math calculations.
u64_max
u128_max
sqrt
pow
mul_div
sum
avg
const U128_MAX: u128 = 340282366920938463463374607431768211455;
const U64_MAX: u64 = 18446744073709551615;
u64_max
u64::MAX
public fun u64_max(): u64
u128_max
u128::MAX
public fun u128_max(): u128
sqrt
babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
public fun sqrt(y: u128): u64
public fun sqrt(y: u128): u64 {
if (y < 4) {
if (y == 0) {
0u64
} else {
1u64
}
} else {
let z = y;
let x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
};
(z as u64)
}
}
pragma opaque = true;
pragma verify = false;
aborts_if [abstract] false;
ensures [abstract] result == spec_sqrt();
We use an uninterpreted function to represent the result of sqrt. The actual value
does not matter for the verification of callers.
fun spec_sqrt(): u128;
pow
calculate the y
pow of x
.
public fun pow(x: u64, y: u64): u128
public fun pow(x: u64, y: u64): u128 {
let result = 1u128;
let z = y;
let u = (x as u128);
while (z > 0) {
if (z % 2 == 1) {
result = (u * result as u128);
};
u = (u * u as u128);
z = z / 2;
};
result
}
pragma opaque = true;
pragma verify = false;
aborts_if [abstract] false;
ensures [abstract] result == spec_pow();
We use an uninterpreted function to represent the result of pow. The actual value
does not matter for the verification of callers.
fun spec_pow(): u128;
mul_div
https://medium.com/coinmonks/math-in-solidity-part-3-percents-and-proportions-4db014e080b1 calculate x * y /z with as little loss of precision as possible and avoid overflow
public fun mul_div(x: u128, y: u128, z: u128): u128
public fun mul_div(x: u128, y: u128, z: u128): u128 {
if (y == z) {
return x
};
if (x == z) {
return y
};
let a = x / z;
let b = x % z;
//x = a * z + b;
let c = y / z;
let d = y % z;
//y = c * z + d;
a * c * z + a * d + b * c + b * d / z
}
pragma opaque = true;
include MulDivAbortsIf;
aborts_if [abstract] false;
ensures [abstract] result == spec_mul_div();
schema MulDivAbortsIf {
x: u128;
y: u128;
z: u128;
aborts_if y != z && x > z && z == 0;
aborts_if y != z && x > z && z!=0 && x/z*y > MAX_U128;
aborts_if y != z && x <= z && z == 0;
aborts_if y != z && x <= z && x / z * (x % z) > MAX_U128;
aborts_if y != z && x <= z && x / z * (x % z) * z > MAX_U128;
aborts_if y != z && x <= z && x / z * (y % z) > MAX_U128;
aborts_if y != z && x <= z && x / z * (x % z) * z + x / z * (y % z) > MAX_U128;
aborts_if y != z && x <= z && x % z * (y / z) > MAX_U128;
aborts_if y != z && x <= z && x % z * (y % z) > MAX_U128;
aborts_if y != z && x <= z && x % z * (y % z) / z > MAX_U128;
aborts_if y != z && x <= z && x / z * (x % z) * z + x / z * (y % z) + x % z * (y / z) > MAX_U128;
aborts_if y != z && x <= z && x / z * (x % z) * z + x / z * (y % z) + x % z * (y / z) + x % z * (y % z) / z > MAX_U128;
}
fun spec_mul_div(): u128;
sum
calculate sum of nums
public fun sum(nums: &vector<u128>): u128
public fun sum(nums: &vector<u128>): u128 {
let len = Vector::length(nums);
let i = 0;
let sum = 0;
while (i < len){
sum = sum + *Vector::borrow(nums, i);
i = i + 1;
};
sum
}
avg
calculate average of nums
public fun avg(nums: &vector<u128>): u128
public fun avg(nums: &vector<u128>): u128{
let len = Vector::length(nums);
let sum = sum(nums);
sum/(len as u128)
}
pragma verify = false;
pragma aborts_if_is_strict;