starcoin-framework

Module 0x1::FixedPoint32

The module provide operations for FixedPoint32.

use 0x1::Errors;

Struct FixedPoint32

Define a fixed-point numeric type with 32 fractional bits. This is just a u64 integer but it is wrapped in a struct to make a unique type.

struct FixedPoint32 has copy, drop, store
Fields
value: u64

Constants

const MAX_U64: u128 = 18446744073709551615;

The denominator provided was zero

const EDENOMINATOR: u64 = 101;

The quotient value would be too large to be held in a u64

const EDIVISION: u64 = 102;

A division by zero was encountered

const EDIVISION_BY_ZERO: u64 = 104;

The multiplied value would be too large to be held in a u64

const EMULTIPLICATION: u64 = 103;

The computed ratio when converting to a FixedPoint32 would be unrepresentable

const ERATIO_OUT_OF_RANGE: u64 = 105;

Function multiply_u64

Multiply a u64 integer by a fixed-point number, truncating any fractional part of the product. This will abort if the product overflows.

public fun multiply_u64(val: u64, multiplier: FixedPoint32::FixedPoint32): u64
Implementation
public fun multiply_u64(val: u64, multiplier: FixedPoint32): u64 {
    // The product of two 64 bit values has 128 bits, so perform the
    // multiplication with u128 types and keep the full 128 bit product
    // to avoid losing accuracy.
    let unscaled_product = (val as u128) * (multiplier.value as u128);
    // The unscaled product has 32 fractional bits (from the multiplier)
    // so rescale it by shifting away the low bits.
    let product = unscaled_product >> 32;
    // Check whether the value is too large.
    assert!(product <= MAX_U64, Errors::limit_exceeded(EMULTIPLICATION));
    (product as u64)
}
Specification Currently, we ignore the actual implementation of this function in verification and treat it as uninterpreted, which simplifies the verification problem significantly. This way we avoid the non-linear arithmetic problem presented by this function. Abstracting this and related functions is possible because the correctness of currency conversion (where FixedPoint32 is used for) is not relevant for the rest of the contract control flow, so we can assume some arbitrary (but fixed) behavior here.
pragma opaque = true;
pragma verify = false;
ensures result == spec_multiply_u64(val, multiplier);

Function divide_u64

Divide a u64 integer by a fixed-point number, truncating any fractional part of the quotient. This will abort if the divisor is zero or if the quotient overflows.

public fun divide_u64(val: u64, divisor: FixedPoint32::FixedPoint32): u64
Implementation
public fun divide_u64(val: u64, divisor: FixedPoint32): u64 {
    // Check for division by zero.
    assert!(divisor.value != 0, Errors::invalid_argument(EDIVISION_BY_ZERO));
    // First convert to 128 bits and then shift left to
    // add 32 fractional zero bits to the dividend.
    let scaled_value = (val as u128) << 32;
    let quotient = scaled_value / (divisor.value as u128);
    // Check whether the value is too large.
    assert!(quotient <= MAX_U64, Errors::limit_exceeded(EDIVISION));
    // the value may be too large, which will cause the cast to fail
    // with an arithmetic error.
    (quotient as u64)
}
Specification See comment at Self::multiply_64.
pragma opaque = true;
pragma verify = false;
ensures result == spec_divide_u64(val, divisor);

Function create_from_rational

Create a fixed-point value from a rational number specified by its numerator and denominator. This function is for convenience; it is also perfectly fine to create a fixed-point value by directly specifying the raw value. This will abort if the denominator is zero or if the ratio is not in the range 2^-32 .. 2^32-1.

public fun create_from_rational(numerator: u64, denominator: u64): FixedPoint32::FixedPoint32
Implementation
public fun create_from_rational(numerator: u64, denominator: u64): FixedPoint32 {
    // If the denominator is zero, this will abort.
    // Scale the numerator to have 64 fractional bits and the denominator
    // to have 32 fractional bits, so that the quotient will have 32
    // fractional bits.
    let scaled_numerator = (numerator as u128) << 64;
    let scaled_denominator = (denominator as u128) << 32;
    assert!(scaled_denominator != 0, Errors::invalid_argument(EDENOMINATOR));
    let quotient = scaled_numerator / scaled_denominator;
    assert!(quotient != 0 || numerator == 0, Errors::invalid_argument(ERATIO_OUT_OF_RANGE));
    // Return the quotient as a fixed-point number. We first need to check whether the cast
    // can succeed.
    assert!(quotient <= MAX_U64, Errors::limit_exceeded(ERATIO_OUT_OF_RANGE));
    FixedPoint32 { value: (quotient as u64) }
}
Specification See comment at Self::multiply_64.
pragma opaque = true;
pragma verify = false;
ensures result == spec_create_from_rational(numerator, denominator);

Function create_from_raw_value

create a fixedpoint 32 from u64.

public fun create_from_raw_value(value: u64): FixedPoint32::FixedPoint32
Implementation
public fun create_from_raw_value(value: u64): FixedPoint32 {
    FixedPoint32 { value }
}

Function get_raw_value

Accessor for the raw u64 value. Other less common operations, such as adding or subtracting FixedPoint32 values, can be done using the raw values directly.

public fun get_raw_value(num: FixedPoint32::FixedPoint32): u64
Implementation
public fun get_raw_value(num: FixedPoint32): u64 {
    num.value
}

Module Specification

pragma verify;
pragma aborts_if_is_strict;

Uninterpreted function for Self::multiply_u64.

fun spec_multiply_u64(val: u64, multiplier: FixedPoint32): u64;

Uninterpreted function for Self::divide_u64.

fun spec_divide_u64(val: u64, divisor: FixedPoint32): u64;

Uninterpreted function for Self::create_from_rational.

fun spec_create_from_rational(numerator: u64, denominator: u64): FixedPoint32;